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a b s t r a c t

Internet of Things (IoT) constitutes a pivotal contributor to the Industry 4.0 (I 4.0) vision, tech-
nologically transforming production and societies. It enables novel services through the seamless
integration of devices, such as motes carrying sensors, with the Internet. However, the broad adoption
of IoT technologies is facing security issues due to the direct access to the devices from the Internet,
the broadcasting nature of the wireless media, and the potential unattended operation of relevant
deployments. In particular, the Routing over Low Power and Lossy Networks (RPL) protocol, a
prominent IoT solution, is vulnerable to a large number of attacks, both of general-purpose and
RPL-specific nature, while the resource-constraints of the corresponding devices are making attack
mitigation even more challenging, e.g., in terms of involved control overhead and detection accuracy.

In this paper, we introduce ASSET, a novel Intrusion Detection System (IDS) for RPL with diverse
profiles to tackle the above issues that mitigate at least 13 attacks. At the same time, other solutions
go up to eight. ASSET, inspired by the network softwarization paradigm, supports a novel, extendable
workflow, bringing together three anomaly-detection and four RPL specification-based mechanisms,
a novel attacker identification process, as well as multiple attack mitigation strategies. Our IDS also
supports an adaptable control & monitoring protocol, trading overhead for accuracy, depending on the
network conditions. The proof-of-concept experiments show that ASSET entails a low overhead for the
different modes of operation it supports (i.e., 6.28 percent on average) compared to other solutions
reaching up to 30 percent. At the same time, it also keeps the power consumption at acceptable levels
(from 0.18 up to 1.54 percent more). Moreover, it provides 100 percent accuracy for specific attacks
and can identify the attacker in far more attacks than any other similar solution.

© 2021 Published by Elsevier B.V.
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1. Introduction

Internet of Things (IoT) does rapidly develop and, among oth-
ers, is the technological enabler for smart-x ecosystems and the
next-generation advanced manufacturing, referred to as I 4.0
(Industry 4.0), that includes smart products, smart production,
and smart services. Indeed, recent advances in communication
technology, e.g., 5G Networks, along with the Industrial IoT (IIoT),
evolve the request for mass production and automation from the
principle idea to connect everything in the production chain to
the more sophisticated context of broader and more fine-grained
interconnections [1]. For example, a network of geographically
distributed factory branches requires sharing resources and assets
to improve orders’ fulfillment. Data transfer among different en-
tities is an essential but also a critical issue in such an automation
ecosystem. The facility of exploiting everyday Internet-enabled
devices as endpoints of accessing resources is an asset. Still, it
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E-mail address: georgevio@uom.edu.gr (G. Violettas).
https://doi.org/10.1016/j.future.2021.07.013
0167-739X/© 2021 Published by Elsevier B.V.
entails hundreds of smart devices, sensors, and actuators commu-
nicating throughout large-scale IoT deployments, where, among
others, security is an essential requirement.

1.1. Motivation

A prominent, standardized routing solution for IoT is the Rout-
ing for Low Power and Lossy Networks (RPL) [2,3], characterized
by significant benefits. These include IPv6 support, moderate
control overhead, and efficient low-power operation under chal-
lenging conditions, e.g., lossy links, heterogeneous and constraint
devices with respect to their power, storage, memory and pro-
cessing capabilities [4,5]. Despite its advantages, RPL still has
open issues, the most important of which are related to attacks
since it is based on the IP(v6) open stack and primarily uses
wireless media for the nodes’ communication.

According to the literature [6], RPL-related attacks include
malicious actions aiming at: (i) exhausting nodes’ resources as a
means of significantly reducing the network’s lifespan and avail-
ability, (ii) disrupting the structure of the Destination-Oriented
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irected Acyclic Graph (DODAG), upon which nodes’ communi-
ation is based, affecting network’s performance in respect to
acket losses and end-to-end (E2E) delays. Passive attacks that
onitor and intercept network traffic, e.g., sniffing, traffic analy-
is, are not part of the paper’s scope since they do not exclusively
oncern RPL.
In fact, some attacks have no significant impact as standalone

events, but they can be critically detrimental to the network in
conjunction with others. Indicatively, impersonation attacks leave
space for malicious activities to originate inside the network,
against which encryption is not a suitable solution [7] because,
for example, an insider attacker getting access to symmetric keys
bypasses the applied RPL security mechanisms. Authenticated
security could be a solution, but RPL RFC [2] does not specify
any mechanisms for public key cryptography [8], which possibly
cannot be supported by constrained nodes [9]. Hash schemes
have been used for topology authentication without being able
to mitigate rank-replay attacks [10].

On the protocol bulletproofing front, the RPL standard [2]
specifies three modes of operation, i.e., unsecured mode, pre-
installed mode, and authenticated mode. At the same time, it
also defines mechanisms for data confidentially and authenticity,
and replay protection [11,12]. Nevertheless, up to this time, RPL
implementations on the most commonly used operating systems
(e.g., Contiki OS and TinyOS) assume the unsecured mode of oper-
ation, putting aside RPL’s security features, which are essentially
characterized as optional. Authors in [11,13] elaborate on a partial
implementation of such features, while according to [8], future
versions of RPL will address such issues as authenticated security.

Until then, a suitable approach to encounter malicious ac-
tivities is the Intrusion Detection Systems (IDSs) [6,7,12]. IDSs
refer to a set of methods designed toward: (i) detecting an attack,
(ii) identifying the attacker, and (iii) mitigating the event. They
aim to detect several attacks concurrently, and ideally, they can
be extended to deal with attacks that are not originally included
in their design goals. Compared to the standalone mechanisms,
they require some degree of collaboration among the network’s
nodes [12].

Regarding the RPL security, the design, development, and eval-
uation of an IDS should satisfy a set of requirements that reflect
the solution’s width and depth. We define the metrics of robust-
ess and extendability for quantitative evaluation (width), refer-

ring to the range over which the impact of an IDS can be spread
with respect to the number of attacks detected. Furthermore,
given that new attacks and security issues emerge following the
IoT research’s progress, IDSs should be developed as a set of
software components (mechanisms) to be quickly and on-the-fly
modifiable to encounter attacks beyond their initial scope.

Moreover, we define the metrics of accuracy and mitigation
time for qualitative evaluation (depth). In fact, an IDS should
exhibit a high accuracy rate regarding both the event and the ad-
versary; this means that the system does not misinterpret normal
events or nodes’ behavior as attacks or attackers, respectively,
while minimizing the cases that attacks or intruders are over-
taken. Once an attack/attacker has been detected, a mitigation
strategy should be employed to rapidly handle the malicious
nodes and restore the network’s operation.

The research field of IDSs in the IoT domain is generally vast.
Still, only a restricted subset of them is appropriate for Low-
power and Lossy Networks (LLNs) [14,15], i.e., they take into
consideration limitations regarding their lossy links, heteroge-
neous and resource-constrained devices. In fact, most of them
have been proposed in the recent bibliography, i.e., from 2013
to 2020 [6,12,14]. An overview of these works makes clear that
there is no one-for-all solution that succeeds in all three axes,
i.e., to detect several attacks at once, to identify the intruder, and
to mitigate the event, and at the same time, meet the aforemen-
tioned requirements of robustness, extendability, high accuracy and
rapid mitigation.
3

1.2. Contribution

Along these lines, we introduce ASSET, a softwarized Intrusion
Detection System that offers a holistic approach to shield an
RPL-based IoT network against different types of attacks. Our
system is inspired by the Software-Defined Networking (SDN)
paradigm, i.e., it transfers functionality from the constraint end-
nodes to central premises, i.e., the Controller, offloading both
computational and communication overhead. At the same time,
it follows a modular architecture that allows adaptations.

In particular, ASSET offers a novel workflow hosting well-
known mechanisms for data analysis, e.g., the K-Means algorithm,
that can efficiently collaborate in data exchange toward detecting
several attacks and multiple intruders in the network. The chal-
lenging point is that we managed to appropriately synthesize a
framework of independent components that are not merely put
one next to the other, but they work as an integrated whole.
Moreover, ASSET’s workflow provides the background for further
enhancements and extensions regarding detection or mitigation
of attacks.

Next, we experiment with a minimum set of mechanisms for
anomaly and RPL specification-based detection, able to address
as many as 13 different types of RPL-related attacks with high
accuracy and moderated cost. We exploit our literature review
findings showing that combining detection methods as well as
placement strategies brings advantages to the system [14]. In
particular, ASSET hosts three anomaly detection methods on the
node and/or on the Controller-level to provide the alternatives of
a lightweight and a computationally-intensive solution, and four
specification-based ones.

Most importantly, we develop an adaptable control & monitor-
ing protocol enabling centralized network supervision. In practice,
the protocol offers: (i) monitoring of RPL-related data, like UDP
packets or ICMP statistics in an adaptable fashion, i.e., trading the
amount of communicating information for control overhead in re-
spect to the network’s conditions; (ii) configuring RPL parameters
on-the-fly as a means of enforcing centralized decisions to the
network nodes once a mitigation action should be taken; and (iii)
communicating node-level anomaly detection events that should
trigger further investigation centrally, e.g., detailed monitoring
by the Controller. To achieve adaptability, we define three modes
f the protocol’s operation, i.e., slim-mode that offers ‘‘baseline’’
onitoring at regular periods, essential-mode that indicates the

irst level of surveillance due to detected anomalies in more
han three nodes, and full-function-mode that denotes the need
f intensive surveillance due to detected anomalies that require
etailed data from IoT nodes.
Novelties of ASSET could be summarized as follows: (i) de-

ection and mitigation have been automated since all the mech-
nisms are incorporated under the umbrella of one workflow,
rchestrated by the central controller; (ii) existing node-level
eatures became centralized to offer a better balance and re-
ponse capabilities; (iii) node-level features are programmable,
ith some addressing several attacks, providing a holistic view;
iv) the modular architecture makes it easy to add new features
r alter existing ones; (v) it can be easily deployed over any kind
f RPL network, anywhere in the central infrastructure, by only
aterializing the connection with the sink node; (vi) the bespoke

ully parameterizable GUI provided, makes it a powerful tool in
he hands of network administrators.

The rest of the paper is outlined as follows. We briefly present
he RPL protocol and the attacks associated with it in Section 2. In
ection 3 we elaborate on the proposed system, including details
f its architecture, interfaces, and mechanisms. Our evaluation
esults are illustrated and discussed in Section 4. Related IDSs
long with a comparative overview are presented in Section 5,
hile conclusions along with further-step ideas are summarized

n the final section.
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. Background

.1. RPL protocol

Our work elaborates on the RPL protocol [2] since it is the
tate-of-the-art routing protocol for LLNs. RPL is a distance-vector
Pv6 protocol operating over the 6LoWPAN (IPv6 over Low-Power
ireless Personal Area Networks) protocol stack where each
ode builds the so-called DODAG to maintain an updated net-
ork topology [4,5]. RPL primarily supports multipoint-to-point
ommunications, i.e., from the leaf-nodes upwards to the sink-
ode(s), which operates as a border router connecting the LLN
ith fixed infrastructure, e.g., via a serial connection.
RPL constructs the DODAG by utilizing an Objective Function

(OF), which evaluates the different possible pathways from every
node to the sink by solving a multi-variable, multi-objective
optimization problem for routes’ discovery. The default Minimum
Rank with Hysteresis Objective Function (MRHOF) [16] considers
the number of hops to the sink-node and/or the quality of each
link between participating nodes into the above pathway(s) by
utilizing the Expected Transition Count (ETX) metric. Other more
sophisticated OFs are also described in the bibliography [17].

To avoid DODAG loops, RPL assigns each node a rank value
related to the rank of the attached parent-node and the distance
from the sink. A node can be (re-)attached to the graph with a
lower rank than its current one upon discovering a new preferred
parent. The opposite case (an updated greater rank) triggers a
Global Repair self-healing mechanism, i.e., recalculating ranks
for all network nodes [18], to avoid count-to-infinity problems.
Moreover, a node resets its rank and re-solicit neighbors (i.e., Lo-
cal Repair) once it loses its parent, i.e., without waiting for the
whole network to reset [19]. To avoid exploitation of the above
mechanisms that cause overhead and delays, RPL RFC [2] suggests
a maximum threshold per hour for the repairs.

RPL’s RFC [2] also defines four ICMPv6 (Internet Control Mes-
sage Protocol) messages for information exchange and facilitating
the DODAG construction. The DIO (DODAG Information Object)
message is first fired by the sink, multicasted and populated
downwards until all reachable nodes receive it. Among others, it
includes timer settings, DODAG version, and mode of operation
(storing/non-storing). DAO (Destination Advertisement Object)
messages travel upward, advertising each node’s ancestor until
reaching the sink. The same information (node–ancestor pair)
is also stored by each node the DAO went through. This way,
each node maintains a version of the DODAG. DIS (DODAG In-
formation Solicitation) is a unicast message beaconed period-
ically by a parentless node to solicit potential parents in its
radio-coverage vicinity. DAO-ACK is an optional message for DAO
acknowledgment that is usually omitted since it causes heavy
overhead.

As the fundamental pillar of RRL, the DODAG needs to be
updated and maintained frequently. A dedicated algorithm—the
Trickle Timer—handles the frequency of DIO messages, upon which
the graph’s convergence time is based. The algorithm balances
preserving the node’s power consumption and keeping the net-
work information up-to-date and trustworthy. To achieve this
trade-off, DIO messages dispatching frequency varies from a
few seconds, up to 17.5 min, since the Trickle Timer’s duration
is doubled each time it fires [5]. Any change in the DODAG,
e.g., unreachable parent, DIO or DAO mismatch, or new parent
selection, causes a Trickle Timer Reset for the particular node. As
a result, DIO messages are dispatched at a higher rate when the
network is unstable and at a slower rate otherwise, preserving
energy and reducing network traffic.

DODAG, as well as the RPL messages and mechanisms, are the
origin of the so-called RPL-related attacks described in the next

section.

4

2.2. RPL-related attacks

Routing in the RPL networks is challenging due to the re-
source constraints of the connected devices. Moreover, such net-
works support dynamic topologies and are based on the wireless
medium’s passive nature. Consequently, they attract malicious
actions, including but not limited to denial of service attacks
(DoS), physical damages, and/or extraction of sensitive informa-
tion, e.g., DODAG version, nodes’ rank values, and nodes’ IDs.
In fact, legitimate nodes can be compromised by exploiting the
RPL mechanisms themselves. Suppose a compromised node is
located near the sink. In that case, a combination of attacks can be
launched with severe effects, spanning from resource-depletion
of nodes, due to a sharp increase in the control overhead, to
delays in data delivery, owing to graph repairs.

A. Raoof et al. [12] provide an interesting classification of the
attacks that are due to the WSN (Wireless Sensor Networks)
inherited features and those designed to explicitly exploit the
protocol’s mechanisms or vulnerabilities. Along these lines, we
briefly present a comprehensive list of the most common and
disrupting attacks on the RPL protocol in the light of their origin
rather than their impact, e.g., Sinkhole attack can degrade the
quality of service in the network and eventually results in DoS
to some parts of it [12].

In RPL networks, similarly to the WSNs, topology exploitation
is an obvious starting point of malicious actions since pack-
ets’ routing depends on the DODAG. Typical routing disruption
attacks, such as Wormhole [15,20,21], Blackhole [15,22], and Selec-
tive Forwarding [15,23] (also known as Grayhole), cause network
traffic loss, topology inconsistencies, and significant delays since
parts of the network can get disconnected. A malicious node may
either drop packets (completely or partially) or alter its standard
routes once it gains an important position in the graph, e.g., a
parent-node with many other nodes attached.

Other typical network attacks, like Flooding [24], Replay [25]
r Neighbor [24] attacks, execute repetitive or falsified message-
ending in order to deceive their victims and introduce incon-
istencies. This subtle manipulation can yield severe topology
ssues and excessive energy consumption, especially in dynamic
etworks with mobile nodes [26]. Unlike Replay attacks in WSNs,
hich are performed with data packets, in RPL, the idea is to
ecord legitimate control messages and forward them later.

Impersonation attacks, such as Clone-ID [6], or the more so-
histicated Sybil [23] attack, are originated from a malicious
ode embezzling the identity(ies) of one or several legitimate(s)
ode(s). The goals vary from disrupting the routing topology to
ubmitting forged data in the network or deceiving/manipulating
reputation-based/voting-based system. These types of attacks
eed a centralized authority to be tackled successfully [27].
Besides the above, several attacks exploit specific RPL features,

uch as the rank and version fields of control messages, the proto-
ol’s self-healing mechanisms, or operation modes. Rank attacks
nclude: (i) Decreased Rank [28] or Sinkhole [23] attack, where the
malicious node advertises a low-rank value to force all neigh-
boring nodes to select it as a parent; (ii) Increased Rank [29,30]
attack, where an adversary near to the sink advertises a high-rank
value to compel all neighboring nodes to avoid it and eventually
sub-optimize their parent choice; and (iii) Worst Parent [30]
attack, where the adversary intentionally makes the worst par-
ent selection for itself to forward the received packets via non-
optimal paths. Eventually, an attacker can powerfully reshape
the topology to diverge from the optimum one [31] with sub-
sequences regarding increased traffic, high energy consumption,
packet delay, and even routing loops.

DODAG inconsistencies are an ordinary situation that is nor-
mally addressed by the protocol’s self-healing mechanisms as a
 130
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eans of nodes’ s energy conservation. Unfortunately, in several
ases, an adversary can take advantage of them. Well-known
xamples include DODAG Version or DODAG Inconsistency [32],
lobal Repair [33,34], Local Repair [15], DIS message [24,35], and
AO inconsistency [6] attacks. Indicatively, Local Repair messages
rom a malicious node cause all neighboring nodes to unnec-
ssarily re-calculate their paths, causing control overhead and
esource exhaustion. Even worse is the case of exploiting the
lobal Repair feature (by advertising a higher version number
han the current one) to reconstruct the whole DODAG from
cratch. The malicious node at the network edge may result in
evere topology inconsistencies, routing loops, and delays.
The Routing Table Overload [24], and Routing Table Falsifica-

ion [30] attacks resemble Flooding and Replay attacks, in the
sense that an adversary sends plenty of bogus routes. The goal
is to either to disorient compromised nodes, or saturate their
routing tables directly and not accept legitimate DAO messages
upon which correct routes can be built up. Memory depletion,
packet loss, and delays are among their effects.

In the aftermath, elaborating on security issues stemming
from the attacks is very challenging due to the diversity of attacks,
the particularity of malicious nodes’ placement in the network,
and the detrimental effects of combining simple attacks, among
others. Since many of the attacks share common features regard-
ing either their origin, e.g., local repair self-healing mechanism
exploitation, or their impact, e.g., irregularities in the data and/or
control packets rates of the affected nodes, our proposal invests
in this observation. Thus, ASSET accommodates a minimum set of
mechanisms for anomaly and RPL specification-based detection
able to address as many as 13 different types of RPL-related
attacks with high accuracy and moderated cost. Next, we present
and discuss ASSET ’s details.

3. Proposed system

Here, we provide the design artifacts of ASSET, including its
high-level architecture and details of the control channel inter-
face. Furthermore, we describe the basic workflows for attack
detection, intruder identification, and attack mitigation, along with
the relevant incorporated mechanisms.

ASSET can mitigate a large number of attacks with a high ac-
curacy since it exploits the softwarization paradigm in computer
networks that allows: (i) centralized monitoring and control of
the network; (ii) co-existence of multiple mechanisms while be-
ing extendable to support new algorithms; and (iii) consideration
of both global and local viewpoints of the IoT network. For exam-
ple, anomaly detection at the node (or a central) level may trigger
other specification-based detection mechanisms. At a functional
level, ASSET mainly consists of a network Controller with attack
etection, attacker identification and mitigation algorithms, a
ontrol channel interface with adaptable control overhead, and
ode-level features for anomaly detection, network control and
onitoring.
The Controller can collect information, both passively and ac-

ively, from different layers, i.e., we currently utilize network-
ayer and application-layer data. Such a cross-layer approach
elps to maintain a detailed network view towards accurate
ecision-making. Attacks’ mitigation is possible by mandating
PL-parameters changes in real-time, e.g., like in [36,37]. In prac-
ice, it provides a front-end to the administrator, supporting sev-
ral mechanisms for detecting both the attacks and the attackers,
long with and threat(s) mitigation.
The Controller communicates with the nodes through the

outhbound Interface, utilizing a lightweight protocol to lookup
r configure particular RPL parameters on-the-fly, monitoring the
etwork in an adaptable fashion, i.e., trading information accu-
acy for control overhead, and communicating anomaly detection
5

Fig. 1. The architecture of ASSET IDS.

events from the data communication to the application plane.
Such information is derived by lightweight monitoring and fast
anomaly detection on a node-level, to reduce communication
overhead with the Controller.

The proposed IDS has been implemented in Contiki OS [38]
and Java, also utilizing the Weka [39], and Graphstream libraries
[40] featuring a unified workflow that embodies several mech-
anisms addressing multiple attacks. In practical terms, the code
is under refactoring, targeting goals such as full modularity and
extendability, e.g., the ability to add or replace an anomaly detec-
tion mechanism. We released the IDS as an open-source,1 under
GPLv3.0.

Regarding nodes’ heterogeneity, although we used Zolertia
Z1 firmware, we noticed that other node types are also com-
patible (e.g., Sky motes). More experiments with heterogeneous
hardware and software can benefit ASSET.

We now detail the IDS architecture and its primary interfaces.

3.1. Architecture & interfaces

The ASSET IDS adopts a three-tier architecture, aligned to the
SDN paradigm [41]. In Fig. 1, we depict the Data Communication,
Control, and Application Planes as well as their main components
detailed below.

The Data Communication Plane concerns the IoT infrastruc-
ture, including the RPL-based protocol stack of the corresponding
nodes. We enable cross-layer configuration hooks to the protocol
stack [36,37] allowing the Controller to read or apply configura-
tion settings, e.g., to instantly enforce changes in RPL operation to
mitigate attacks. Furthermore, the nodes support control packet
statistics being either processed locally, i.e., by manifesting per-
node anomaly detection capabilities, or communicated to the Con-
troller. The Data Communication Plane interacts with the Control
Plane through the Southbound Interface, carrying either packet
statistics from the nodes to the Controller or configuration actions
towards the opposite direction.

The other two layers, i.e., the Control and Application Planes, re-
ide at the Controller and interact between each other through the
orthbound Interface, which is REST-based. The Control Plane is
esponsible for the network control aspects, while the Application
lane for the IDS data analysis and GUI features.
The Control Plane is attached to the sink node, employing

assive and active data communication monitoring of the nodes,

1 https://github.com/SWNRG/ASSET.

https://github.com/SWNRG/ASSET
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.e., retrieving data communication statistics from the sink or
he nodes, respectively. The RPL control engine is responsible
for enforcing particular RPL configuration processes and receiv-
ing node-level anomaly detection events from the nodes. The
data communication statistics and the anomaly detection events
are being communicated to the Application Plane through the
Northbound Interface for further actions. Furthermore, the Control
lane maintains a real-time network representation based on the
raphstream library [40,42].
The Application Plane provides the GUI and configuration as-

ects of the IDS. It supports a real-time visualization of the IoT
opology, which also designates potential IoT nodes acting as
ttackers. Furthermore, it provides handles to the administrator
or management and configuration aspects of the IoT network
nd the intrusion detection process. Finally, it is responsible for
he data analysis tasks of the Controller, including controller-level
nomaly detection algorithms, specification-based detection mech-
nisms, classification algorithms for the attacker identification, as
ell as a counter-measures engine, being responsible for triggering
ttack mitigation processes, as a result of the data analysis.
We now move on to discussing ASSET’s interfaces. Since the

orthbound Interface is an internal interface of the Controller,
e mainly focus on the Southbound Interface, which is essential

or the performance of ASSET, especially towards reducing the
nvolved control overhead.

.1.1. The Southbound Interface
The Southbound Interface utilizes a lightweight application-

evel protocol that allows the Controller to communicate with the
odes via the sink. The protocol maintains compatibility with the
PL standard while being flexible to incorporate new features,
uch as a novel mechanism for mitigating a newly discovered
ttack. It supports either pulling of information, i.e., the Controller
etrieving monitoring information or configuration parameters
rom nodes, or pushing information, i.e., the nodes notify the
ontroller regarding their monitored data periodically. The im-
lemented protocol configuration hooks [4,5,37], based on the
elevant interfaces implemented in the context of the WiSHFUL
roject (i.e., called UPIs), enable the Controller to act as a cen-
ralized network control facility, especially for enforcing attack
itigation measures.
The Southbound Interface is responsible for the following as-

ects: (i) monitoring nodes on the statistics of packets exchanged
nd RPL behavior, with different levels of accuracy and com-
unication overhead, depending on the criticality of network
onditions; (ii) enforcing changes in RPL protocol behavior of
odes to mitigate an attack; and (iii) communicating node-level
nomaly (or specification-based) detection events—from nodes to
he Controller—for triggering further actions. In practical terms,
he interface operates in three different modes, i.e., slim-mode,
ssential-mode, and full-function-mode, described as follows:
(1) In slim-mode, ASSET operates with the minimum number of

onitoring messages, being essential to construct the complete
raph of the network centrally. Either the Controller requests
he parent of a node, or the nodes are periodically reporting all
arent changes. This mode is in place in networks without attack
ndications.

(2) In essential-mode, the nodes transmit to the Controller—
esides the slim-mode notifications—periodic ICMP statistics,
hich enable controller-level anomaly detection. This mode is
nabled when a node detects an attack through its node-level
nomaly detection process.
(3) In full-function-mode, the nodes complement the previ-

us modes with additional information, i.e., the node’s rank and
eighbors information for ASSET to detect—among others—Rank
nd Sybil attacks with higher precision. The ASSET administrator
6

an configure and enable this mode when certain criteria are met
a given number of nodes detect an anomaly).

We now describe in detail the messages exchanged between
he Controller and the nodes. In Table 1, we enlist all messages,
nd their design primitives, supported by the Southbound In-
erface and its corresponding network control and monitoring
rotocol. The last column depicts the specific mode they are
tilized with (i.e., slim, essential, full-function).
In RPL, nodes collect information about their neighbors (i.e.,

odes within the wireless radio coverage) and nominate a pre-
erred parent within time instances specified by the Trickle Timer
lgorithm. This way, a network graph, i.e., the DODAG, is con-
tructed in a distributed manner. Since this information is local,
e implemented a notification feature in every node triggered
y any parent-change event. In such a case, the node transmits
message to the Controller indicating the latest chosen parent
ith its rank, i.e., a [NP] message. Consequently, the Controller

s aware of all nodes’ current parent and can form the topology
raph. Alternatively, the Controller may proactively request the
ode’s parent information if such information is missing through
[SP] message. Slim-mode uses these two messages only.
Other messages from nodes to the Controller include the [IS],

NR], and [NN], communicating ICMP statistics (e.g., total sent and
eceived messages), node’s current rank, and available neighbors
ith their ranks, respectively. Whenever a node detects an outlier

n its ICMP statistics, it dispatches an [AD] message. Further-
ore, the [VN] and [RN] messages inform the Controller for a
ODAG Inconsistency or Local Repair attack, detected by a node,
espectively.

The Controller uses designated messages to: (i) solicit missing
ode’s parent or node’s neighbors’ information with [SP] and [SN]
essages, respectively; (ii) enable or disable ICMP statistics, and
eighbor information notifications with [EI] and [NL] messages,
espectively; and (iii) implement actions to mitigate attacks, in-
luding disabling Trickle Timer resets with [TT], blacklisting a
ode from becoming a parent with [BL], and disable Local and
lobal Repair features with [LR] and [GR] messages, respectively.
Consequently, the Southbound Interface enables novel ASSET

apabilities, i.e., balancing control overhead to given network
onditions and the support of multiple intrusion detection fea-
ures.

In the following subsections, we elaborate on the intrusion
etection workflow of ASSET and its corresponding mechanisms
or attack detection, attacker identification, and attack mitigation.

.2. Intrusion detection workflow

ASSET operates over the Controller and the IoT nodes inter-
hangeably, as depicted in Fig. 2, offloading processes tradition-
lly handled by the nodes to a centralized Controller, for a better
ntrusion detection accuracy and resource efficiency.

When the network runs stably, in terms of ICMP and data
raffic behavior, the Controller collects only the active topolog-
cal structure (i.e., slim-mode). In parallel, the nodes perform
nomaly detection based on their own measured ICMP statistics.
n case they detect one or more outliers, they enable the essential-
ode of the Southbound Interface, i.e., start communicating the

CMP statistics to the Controller. Both nodes and Controller com-
lementarily support RPL specification-based attack detection,
ike monitoring the number of recent local topology repairs and
ODAG inconsistencies.
The Controller performs anomaly detection on data statistics to

etect Blackhole and Grayhole attacks. Furthermore, it may utilize
he full-function-mode to request additional information, such
s the node’s rank and its neighbors with their corresponding
anks to detect a Decreased Rank attack by comparing the rank
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Messages exchanged between the Controller and the nodes.

ID MESSAGE FORMAT DESCRIPTION M

Nodes initiated

NP [IPv6][IPv6][int] Node’s current parent S

IS [IPv6][int] ICMP statistics

EAD [IPv6][boolean] Anomaly detection notification
VN [IPv6][boolean] Version attack notification
RN [IPv6][boolean] Local Repair attack notification

NR [IPv6][int] Nodes’ current rank FNN [IPv6][IPv6 neighbors][list] Available neighbors and their ranks

Controller initiated

SP [IPv6][int] Requests the node’s parent S

SN [IPv6][list] Solicits node’s neighbors information
EI [IPv6 or multicast][boolean] Enable/Disable ICMP notifications

E
TT [IPv6 or multicast][boolean] Enable/Disable Trickle Timer reset
BL [IPv6][boolean] Node blacklisted (Y/N)
LR [IPv6 or multicast][boolean] Enable/Disable Local Repair
GR [IPv6 or multicast][boolean] Enable/Disable Global Repair

SN [IPv6][list] Solicits node’s neighbors information FNL [IPv6 or multicast][boolean] Enable/Disable neighbors information

(M)ode: S: Slim, E: Essential, F: Full-function.
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Fig. 2. An abstract view of ASSET’s, workflow both on the Controller and
node-level.

declared by each node with those reported by its neighboring
nodes. The current version of workflow also supports the de-
tection of Flooding and Replay/Neighbor attacks from the ICMP
anomalies created and Clone-ID attacks by continuously com-
paring all nodes’ IDs reported. Depending on the type of attack
detected, the workflow implements an attacker(s’) identification
process and several attack-mitigation processes concerning iden-
tified malicious nodes, including node blacklisting, suspension of
Local Repairs, or Trickle Timer Resets.

We now elaborate on the particular attack detection, attacker
identification, and attack mitigation mechanisms implemented by
the ASSET IDS workflow.

3.3. Attack detection mechanisms

ASSET exploits the distributed capabilities of RPL to enable
a relatively lightweight anomaly detection on a node level, as
7

the first line of defense. By residing on the central infrastruc-
ture, it embraces a centralized approach to provide a resource-
consuming but more accurate controller-level anomaly detec-
tion process, along with several attack-specific detection mech-
anisms. Moreover, it utilizes RPL specification-based mechanisms
to improve its capability to tackle more attacks.

The following subsections detail both anomaly detection pro-
cesses and the attack-specific detection mechanisms, supported
by ASSET.

3.3.1. Anomaly detection
ASSET is utilizing anomaly detection mechanisms without the

need of training data, both at node- and Controller-level.
The node-level anomaly detection operates on every indi-

vidual node autonomously by monitoring the ICMP messages
(DIO, DAO, DIS) produced by the node. Any irregularity found is
communicated with the Controller for further action(s). Anomaly
detection at a node-level is considered rapid and efficient [43,
44], because of the locality of detected attacks. Furthermore,
relevant mechanisms should be lightweight, i.e., consider the
resource-constraint nature of IoT devices. We currently use a low-
complexity and a memory-efficient mechanism that detects irreg-
ularities, i.e., Dixon’s or Dixon-Q Test. The same method was suc-
cessfully used for detecting malicious users in a cognitive radio
networks setting, outperforming Grubb’s and boxplot tests [45],
with the limitation of considering one malicious user only. Since
the Dixon-Q test runs on every node and communicates the
possible outlier to the Controller, ASSET can employ Dixon-Q
to detect multiple concurrent intruders. Dixon-Q is also widely
used in other scientific disciplines, for example, as a method
for rejecting grossly deviant (outlying) values of data sets [46].
The test assumes a normal (Gaussian) distribution of data, a
typical assumption of significance tests, which was found to be
true for the ICMP data produced by the nodes in random tests
we conducted. The behavior of the particular anomaly detection
mechanism in our results implicitly validated this assumption.

In detail, Dixon-Q test is based on calculating a Q-value de-
fined as the ratio given by the distance of the value to be tested
from its nearest neighbor, divided by the range of values. If it
exceeds the tabulated critical Q-test value (i.e., called Qcrit ) for a
given Confidence Level (CL) and a number of samples N , then this
value can be rejected with a probability of erroneous rejection
(type I error) that is a function of the selected confidence level.
For example, probabilities p = 0.01, 0.05, and 0.10, correspond to
CLs of 99, 95 and 90 percent, since CL = (1 − p) ∗ 100, named as
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onfidence values q99, q95, q90, respectively. The test’s sensitiv-
ty can be adjusted by altering the size N of data (i.e., wsize), along
ith the probability p of Type I error (or confidence level, CL).

Dixon-Q test is lightweight and easy to implement for resource-
constrained devices since it only needs a couple of subtractions
and one division with every two newly arrived samples. For
example, if the samples are 3-digit, the total added complexity
is Θ(3)+O(M(3))log3, which associates with negligible overhead
for resource-constrained devices. Each time an outlier is detected,
it is communicated to the Controller through the Southbound
nterface as an ‘‘orange’’ alert to trigger further intrusion detection
actions, such as a Controller-level anomaly detection process.

The Controller can implement more resource-consuming at-
tack detection approaches than the nodes, however with addi-
tional control overhead, i.e., the IDS switches to essential-mode,
allowing for a global view of the network, to investigate anoma-
lies both in the control and data traffic. Regarding the control
traffic, the relevant process is enabled whenever Dixon-Q detects
an anomaly in the neighborhood of one or more nodes. ASSET
currently employs Chebyshev’s inequality [47], acting as a more
accurate but also complex example, compared to Dixon-Q.

When the data distribution is unknown, Chebyshev’s inequal-
ity theorem guarantees that at least 1 −

1
K2 of data from a

sample fall within K standard deviations from the mean. This can
be the basis of an outlier detection method [47] by calculating
relevant lower or upper outlier detection value (ODV) limits. Any
data value outside these limits is considered to be an outlier.
For calculating the ODV limits, there is a need to define a p1
threshold, trimming a small percentage of extreme values at the
beginning of the outlier detection process, so outliers do not bias
the standard deviation calculation. Indicative p1 values are 0.01,
0.05, or 0.10. Additionally, a second p2 threshold represents the
expected probability of an outlier appearance. The p2 threshold is
used to determine outliers, and is usually lower than p1, taking
values like 10−2, 10−3, 10−4. Both p1 and p2 control the outlier
detection process’s sensitivity and determine the k values for
the outlier pre-filtering (first phase) and actual outlier detection
(second phase) processes, respectively.

Regarding the detection of anomalies in data traffic (Blackhole
or Grayhole attacks), ASSET monitors data packet reception based
on the K-means algorithm [48] implemented in Weka library [39].
Given n measurements of nodes to be clustered, a distance mea-
sure d to capture their dissimilarity, and the number of clusters to
be created (i.e., k = 2 in our case), the algorithm initially selects
k random points as the clusters’ centers. It assigns the rest of
the n − k points to the closest cluster center (according to d).
Then, within each of these k clusters, the cluster representative
(also known as centroid or mean) is computed. The process con-
tinues iteratively with these representatives as the new clusters’
centers until convergence. Although this is an NP-hard problem,
it is simplified by heuristic algorithms to converge to a local
optimum [49].

Next, we describe the specification-based mechanisms of the
Controller.

3.3.2. Specification-based detection
To highlight the extendability benefits of ASSET, we introduce

basic building blocks that can form alternative RPL specification-
based detection methods, including: (i) RPL subsystem or param-
eter monitoring, which relates to ASSET following the behavior of
RPL, reflected to particular parameters, through the Southbound
interface, e.g., number of Trickle Timer Resets, nodes’ rank values,
etc; and (ii) a number of fixed or adaptable thresholds, indicating
an abnormal RPL status, in case they are crossed. At this point,
ASSET supports four specification-based mechanisms (i.e., Rank
Validation, Node ID Validation, Fixed Threshold F and Adaptable
Threshold λ based detection), which brief description follows.
 c

8

A Decreased Rank attack is detected upon discrepancies of
nodes’ and nodes’ parents’ advertised rank via [NR] messages.
More specifically, according to an algorithm introduced in [35],
if a node’s rank, plus the RPL stabilizing parameter MinHopRank-
Increase [2] is lower than its parent’s rank, then the latter is
considered as an attacker. We also monitor all advertised ranks
to be higher than the sink’s rank plus the MinHopRankIncrease.
Furthermore, the Controller detects a Clone-ID attack via a mech-
anism named Node ID Validation (∆) to detect two nodes with the
same ID.

At this point of the investigation, ASSET uses configurable fixed
thresholds F to monitor crucial parameters at the Controller or
node level, including the number of triggered Local and Global
Repairs , and Trickle Timer Resets; whenever they exceed the
particular thresholds, the Controller is notified for further attack
detection actions.

Furthermore, we apply an adaptable threshold λ, which we
elaborate on here. Several attacks relate to fabricated control
messages causing RPL performance issues. For example, the sink-
node avoids routing loops and topology inconsistencies by in-
creasing the DODAG version whenever a global topology repair
occurs. Intruders can inject continuously increasing DODAG ver-
sions into DIO messages they dispatch, causing the receiving
nodes to reset their Trickle Timer, implement local topology re-
pairs, and consequently face increased communication overhead.
The protocol reduces the effects of such attacks by limiting the
number of Trickle Timer Resets based on a fixed RPL threshold
with the value 20. Any malformed packets, i.e., with the ‘R’ flag
IPv6 header option set, upon reaching this threshold, are being
dropped by the receiving node without triggering Trickle Timer
Resets.

Here, we utilize the adaptable λ(r) threshold function intro-
duced in [32], which is more effective than RPL’s fixed threshold
in terms of reacting to varying attack patterns. We use a fixed
threshold F at the node-level in practice, while we introduced
a centralized variation of the above algorithm at the controller-

level, as λ(r) = [α + β · e1−γ ·r
], where r =

∑n
i=1 Eipkts∑n
i=1 Di

pkts
, α = 5, n is

he number of nodes communicating packets, Epkts the number of
eceived packets with ‘R’ flag set true, Dpkts the total number of
ackets received. The β is chosen to lead to a default λ(r) value

of 20 (i.e., as suggested by RPL RFC [2]) and α ensures that λ(r)
annot be zero. The value of γ , according to the authors, should
e 20 < γ < 25, i.e., we set it to value 22 in our case. Such
entralized variation brings the advantage of having a λ value
haracterizing the whole topology, so a local attack incident leads
o the corresponding protection of all nodes in the network.

In our case, the adaptable threshold λ appears more con-
ervative compared to the one introduced in [32], since the r
alue reduces with the topology size. However, it produces ex-
ellent results in the particular experiments we carried out. A
ossible improvement could be a normalization of the equation
oncerning the number of nodes.
In a similar way, other mechanisms monitoring particular RPL

ubsystems or parameters and applying thresholds could be im-
lemented to detect additional attacks. Right below, we proceed
ith the description of our attacker identification mechanism

ntroduced here.

.4. Attacker identification

Several attacks require identifying the intruder(s) before their
itigation, e.g., blacklisting a node causing a Sinkhole attack. In
pecific cases, intruder detection may be straightforward. For
xample, a duplicated ID could signify a Clone-ID attack, espe-
ially if the IDs are pre-assigned. In such cases, the recommended
 129
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Fig. 3. ASSET identifies two concurrent intruders.

ction could be to engage a human administrator for further steps
r to mark the node that appeared second as a suspect while
onsidering possible network delays as indications of an attack.
We propose a novel intruder identification process that can

andle multiple co-existing attacks in high accuracy for other
ases. Example usage of the ASSET platform and its GUI locating
wo intruders (marked with red X’s) as well as the affected nodes
marked as red diamonds) is shown in Fig. 3.

In Algorithm 1 we detail the proposed attacker identification
rocess. In particular, such a process is being triggered by the
etection of an anomaly at the Controller-level, i.e., by Cheby-
hev’s inequality approach (line 3). This is based on information
elated to the implemented monitoring mode, e.g., ICMP statistics
n the case of essential-mode. Moreover, Algorithm 1 depicts in
ine 8, how the Controller continuously monitors each node’s data
ackets for irregularities.
If the K-Means algorithm succeeds into clustering the network

nodes into two groups with high confidence, the smallest group
will be considered under attack (line 15). It will be further pro-
cessed for subgraph(s) division, representing multiple co-existing
attacks, i.e., defined as a clique. Here, we apply Kosaraju’s al-
gorithm [50], which locates strongly connected components as
a directed graph G = (V , E) in linear time (i.e., Θ(V + E)
ime) [51]. In particular, we utilize the Depth First Search (DFS)
ecursive algorithm from [51]. Our main assumption is the follow-
ng. In the case of multiple intruders, the network faces several
eighborhoods with disrupted regular operations. Hence, all af-
ected nodes along with the equivalent intruders form strongly
onnected sub-graphs. The final step applies root nodes identifi-
ation for each of the detected sub-graphs, i.e., representing the
ttacker(s) (line 17). The roots are defined as mother-vertices
nd located through applying the mother-vertex algorithm. The
other-vertex of a (strongly connected) graph G = (V , E), is a

vertex v such that a path from v can reach all other vertices
in G. The algorithm has to check if v is a mother-vertex by
xecuting DFS one more time. Consequently, the complexity of
he algorithm is Θ(V + E) + Θ(V + E) = Θ(V + E).

As soon as one or more intruders are identified, a blacklisting
process may be initiated, disallowing the attacker(s) from being
part of the RPL DODAG. In the following subsection, we discuss
the mitigation features supported by ASSET.

3.5. Attack mitigation

The final step of ASSET intrusion detection workflow concerns
the attack mitigation. The selection of the appropriate mitigation
9

Algorithm 1: Intrusion Detection Process
Input : Data / ICMP packets
Output: Intruder node(s) to be blacklisted

1 /* Continuously monitoring for anomalies */
2 while ICMP_Statistics do
3 if Chebyshev(ICMP packets) then
4 /* Essential mode */
5 intruder_detection(ICMP packets);
6 end
7 end
8 foreach node do
9 while new data_packets do

10 intruder_detection(data_packets);
11 end
12 end
13 Function intruder_detection(data_in):
14 /* k-means creates 2 groups of nodes */
15 if (affected_group = k_means(data_in)) then
16 affected_graphs = kosaraju(affected_group);
17 foreach (affected_graphs g) do
18 intruder = graph_mother(g);
19 end
20 end
21 End Function

Algorithm 2: Parent selection considering blacklisted nodes.
Input : Candidate parents p1 and p2
Output: Selected parent

1 begin
2 if (p1 && p2) in blacklist then
3 return null;
4 else if p1 in blacklist then
5 return p2;
6 else if p2 in blacklist then
7 return p1;
8 else
9 // Standard RPL-MRHOF objective function

10 return p1.ETX < p2.ETX ? p1 : p2;
11 end
12 end

method to enforce depends on the detection algorithm that pre-
cedes, i.e., corresponding to particular types of attacks. In this
context, ASSET supports the following mitigation methods:

(i) Blacklist Intruder: A large number of attacks can be mit-
igated by excluding the intruder(s) from being considered as a
parent by all nodes in the network. To preserve full compatibil-
ity with the RPL standard, we implemented a node blacklisting
mechanism (described in Algorithm 2) as an extension of the
default OF [16]. In detail, each node maintains a local blacklisting
array, which is updated by [BL] messages received by the Con-
troller. Blacklisted nodes are excluded from the parent selection
process, even if they appear as more suitable options, as shown
in Algorithm 2. (ii) Ignore Global Repairs and Stop Local Repairs:
Since both those mandates may consume significant resources if
they are the result of an attack (e.g., DODAG Inconsistency attack),
the ASSET IDS may decide to suspend one or both of them,
i.e., the former at the sink, and the latter at the concerning nodes,
resulting in the suspension of exchanging corresponding DIO
packets. The Ignore Global Repair mitigation method is triggered
by the [GR] message transmitted from the Controller to the sink.
The Stop Local Repair mitigation method is being triggered either
 66
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ttacks and designated actions supported by the IDS.

Categories Description and effects of the attack(s) DM PS DI IA AM
Topology exploitation Cause traffic loss, topology inconsistencies or significant delays

Blackhole Messages to be forwarded are dropped K C U Y B
Grayhole Messages to be forwarded are selectively dropped K C U Y B

Network attacks Capture control messages and forward or replay them maliciously

Flooding All legitimate messages are replicated Di,Ch H I,U,R N G,L,P
Replay Specific control messages (i.e., DIO) are replicated Di,Ch H I,R N G,L,P
Neighbor Replicates control messages originated from a neighboring node Di,Ch H I,R N G,L,P

Impersonation attacks Steal the identity(ies) of one or more node(s)

Clone-ID / Sybil Pretends to be a ‘‘legitimate’’ node by confiscating its ID ∆ C I,R Y B

RPL specific attacks Exploit specific RPL features

Decreased Rank/Sinkhole Advertises a closer to the sink position than the real one Di,Ch,RV H I,R Y B
DODAG Inconsistency Applies an inconsistent DODAG which forces nodes to probe neighbors λ(C,n) H T,R N G,L,P
DODAG Version Increases DODAG version periodically, triggering resets of network probing timers λ(C,n) C T,R N G,L,P
Global Repair Resets routing tables and probes all nodes, i.e, to repair topology λ(C) C R N G
Local Repair Nodes reset their local routing tables, i.e., triggering neighbors’ probing λ(C),F(n) H T,R N L,P

DM: Detection Method - Anomaly Detection [(Di)ixon, (Ch)ebyshev, (K)-Means], Specification Based [Adaptable Threshold (λ(C:Controller, n:node)), Fixed Threshold
F), Rank Validation (RV), Node ID Validation (∆)].
S: Placement Strategy - (C)ontroller, (H)ybrid.
I: Data Input - (I)CMP Statistics, (U)DP Statistics, (T)rickle Timer Resets Counter, (R)PL Control Messages.
A: Identification of Attacker - Y/N.
M: Attack Mitigation - (B)lacklist Node, I(G)nore Global Repairs, Stop (L)ocal Repairs, Sto(P) Trickle Timer Resets.
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ocally or through the [LR] message sent from the Controller to
the corresponding node(s).

(iii) Stop Trickle Timer Resets: Equivalently, the Trickle Timer
Resets cause significant control overhead since RPL control mes-
sages are being exchanged more frequently. A Stop Trickle Timer
Resets mitigation method can either be triggered locally or from
the Controller ([TT] message) allowing for the node(s) to ignore
all Trickle Timer Resets, for a particular period.

3.6. Summary

In Table 2, we summarize how all the above IDS features
are associated with all handled attacks, including their brief de-
scriptions. More specifically, we enlist for all attacks: (i) the
detection method applied (i.e., whether it is anomaly detection
or specification based) as well as the specific detection features
utilized; (ii) the placement of the detection method, i.e., at the
Controller only or also at the nodes (hybrid); (iii) the required
data input for the particular detection method; (iv) whether the
identification of an attacker is needed for its mitigation; and (v)
the mitigation method which is appropriate to this type of attack.

The table highlights that ASSET handles diverse types of at-
tacks through different combinations among the supported IDS
features. We note that anomaly detection can even detect un-
known attacks causing communication disruptions. Furthermore,
new specification-based building blocks can be integrated to in-
crease its supported number of attacks further. Although the
IDS could be implemented with different relevant algorithms
performing even better, our selection performed decently in our
experimentation exercise and enough to validate the main ASSET
novelties.

Moreover, in Fig. 4, we illustrate the threat model [52,53]
we consider in this work, i.e., which is a visualized analysis of
network security breach strategies, along with our IDS’s match-
ing mitigation techniques. To establish this risk assessment, we
begin by pinpointing the assets upon which the RPL network’s
mission is based. Next, we explore the potential threats in high
and low risk, originating either from malicious actions or known
RPL weaknesses, i.e., due to RPL’s constrained nature. Finally, we
complete the model by introducing the IDS’s defenses serving as
a shield from threats and vulnerabilities.
10
Fig. 4. Threat model.

4. Evaluation results

We evaluate ASSET in line with robustness and extendability
that reflect the width of our solution, as well as accuracy and
mitigation-time that express its depth. More specifically, we be-
gin with discussing our evaluation methodology and, then, we
present: (i) proof-of-concept simulation results that demonstrate
attack incidents, along with ASSET’s response in terms of detec-
tion and mitigation, as well as attacker’s identification; and (ii)
the ASSET’s robustness with an evaluation of its operation under
a range of attacks triggering all discussed mechanisms.

4.1. Evaluation methodology

For the ASSET’s performance evaluation, we utilize the Cooja
emulator in Contiki OS [38]. The simulations carried out are con-
sidering one sink node, a set of legitimate nodes, and one attacker
node. Although ASSET can potentially mitigate attacks caused by
multiple malicious nodes, we left the relevant experimentation
as future work. The network setup parameters are described in

detail in Table 3. 57
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etwork setup parameters.
Parameter Value Notes
Network layer RPL Storing mode
MAC layer 802.15.4
Implementation Contiki 3.0 - Cooja
Sink node(s) 1 Serial Port Connection
Mote type Zolertia Z1
Nodes placement Random
Number of nodes 25 or 50
Area 800 m × 800 m
Simulated time 3 h 10,800,00 ms
Data (UDP) transmission
period (P)

5 min Unless otherwise stated

ICMP probing frequency 5 min Avoiding zero probings
Packet size 70 B Average size
TX range 50 m
Interference range 50 m
TX/RX success ratio 100%
Trickle timer duration 4 ms–17.5 min Contiki RPL defaults

We only consider attacks where the intruder is part of the
active RPL topology i.e., responds promptly to the Controller ’s
olicitation messages, e.g., it would be rather trivial for an IDS
ith centralized components to detect and, consequently, black-

ist as possible intruder a node that does not respond to such
essages. Once being blacklisted, the intruder cannot be chosen
s a parent-node, and hence, it cannot successfully launch most of
he RPL attacks described in Section 2.2. In practice, we consider
hat the attacker node(s) are running multiple modified Contiki
S versions2 (also available under GPLv3.0) to execute one or
ore attacks in conjunction. Right afterward, we present proof-
f-concept results demonstrating ASSET’s operation under various
ttacks.

.2. Proof-of-concept results

To evaluate the different aspects of ASSET and reveal the
otential of its mechanisms, we conducted several experiments,
s presented below. Those proof-of-concept experiments focus
n demonstrating ASSET’s functionalities along with the required
idth and depth. Comparing ASSET with other similar solutions is
onsidered as a future work since (i) we have to identify common
se-cases in terms of required security level and affordable con-
rol overhead or processing cost; and (ii) we have to determine
he type of involved mitigation action and its impact since this
etermines the communication or performance issues that a false
ositive can cause.

.2.1. Detection mechanisms evaluation
The first proof-of-concept simulation is associated with

nomaly detection mechanisms of ASSET. As illustrated in Fig. 5,
e consider a network with 50 nodes (marked with yellow)
andomly placed around the sink-node (the green one), while
n intruder (ID = 54, purple color) compromises the network
y unleashing a Decreased Rank attack advertising a lower rank
alue than all other legitimate nodes in its wireless coverage
i.e., the green range). As a result, most of the nodes within
ange, i.e., nodes with ID 27, 32, 33, 42 and some others around it,
.e., nodes with ID 4, 17, 44, increase the number of ICMP packets
exchanged, in their effort to recalculate paths to the sink.

The Dixon-Q test mechanism in every node detects the
anomaly in the number of ICMP messages sent and received,
as shown by the PANIC entries in the log file illustrated in the
right-hand window in Fig. 5. In our simulation, we configure the

2 https://github.com/SWNRG/contiki-malicious.
11
Fig. 5. An RPL network under Decreased Rank attack.

able 4
ode-level anomaly detection: Dixon-Q test, wsize = 7.
ICMP NODE t6 t5 t4 t3 t2 t1 t0

SEND

4 4 4 4 5 4 4 18
17 5 2 5 3 3 4 15
27 5 3 6 4 4 5 19
32 4 4 4 3 6 4 19
33 7 4 6 5 7 7 17
42 8 7 6 6 9 8 13
44 3 5 3 3 4 5 8

RECV

4 3 4 3 1 5 4 39
17 12 5 4 5 5 4 42
27 10 6 5 4 4 6 82
32 9 4 2 3 3 3 64
33 11 6 5 5 7 6 91
42 6 6 5 5 9 8 58
44 4 3 3 7 3 3 20

Dixon-Q window-size as wsize = 7. Table 4 shows for each of
the above nodes that the latest of seven values, regarding both
the incoming (RECV) and outgoing (SEND) ICMP packets, is an
outlier, causing seven nodes to dispatch the [AD] message at t0
(nodes within the attacker’s range are with gray background in
Table 4). Since the number of nodes sending a [AD] message
exceeds the threshold of three, ASSET activates controller-level
anomaly detection by Chebyshev’s inequality mechanism for fur-
ther investigation of the attack instance, i.e., attacker’s detection
and mitigation.

4.2.2. Control overhead & power consumption
The holistic approach provided by ASSET is illustrated in Fig. 6

which is the outcome of our second proof-of-concept simulation.
In practice, we simulated for three hours (x-axis) a multi-hop
network with 25 nodes randomly placed around one sink, con-
sidering a combination of Decreased Rank and Blackhole attacks,
and we observe the network’s control overhead to validate our
intuition regarding the impact of attacks over it. Fig. 6 shows that
attacks are launched at 01:20 hour (vertical red line), detected
at 01:32 hour (vertical yellow line), and mitigated at 01:47 hour
(vertical green line).

We chose a typical combination of attacks. The intruder-node
discards data packets, e.g., UDP, once it successfully deceives
 64

https://github.com/SWNRG/contiki-malicious
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Fig. 6. Control overhead over time for a combined Decreased Rank and Blackhole
ttack on a network of 25 nodes.

Fig. 7. Average power consumption of nodes under ASSET’s different modes of
peration.

everal nodes that choose it as a routing node (i.e., parent) for
heir packets. Fig. 6 does imprint the impact of the Decreased Rank
attack, which precedes the Blackhole one. Once the attack has
taken place, the Dixon-Q test detects outliers in control packets
on six nodes at 01:25 hour and three more nodes at 01:30.
These nodes notify the Controller with [AD] messages, activating
the Chebyshev’s inequality mechanism for a more fine-grained
detection. For this purpose, apart from a [NP] message, nodes also
dispatch their latest chosen parent-node, i.e., ICMP statistics ([IS]
messages), node’s current rank ([NR] messages), and available
neighbors ([NN] messages), assisting the Controller in identifying
he intruder. Once the intruder is identified, the Controller at
1:32 dispatches a [BL] message to all nodes as a mitigation
ction. Fig. 6 provides evidence that, at 01:47 hour, the network
raph is concise again, i.e., network nodes selected legitimate
arents, after excluding the attacker as a candidate parent.
Regarding power consumption, we conducted the same exper-

ment under four different modes of operation, i.e., standard RPL
ompared with the three operation modes of ASSET (i.e., slim-
essential-, full-function-modes). The results are presented in
ig. 7, where after the initial anticipated initial power ‘‘spikes’’
12
Fig. 8. An RPL network under Blackhole attack.

until the network settles down, the power consumption is min-
imal, with only full-function mode consuming slightly more en-
ergy. In total, compared with RPL, the slim-mode consumes 0.18
percent more power per node, the essential mode consumes 0.71
percent, while the full-function mode consumes 1.54 percent
more energy. Compared to other similar solutions, SVELTE [43]
has a 30 percent overhead compared to RPL.

4.2.3. ASSET’s modes of operation
Moreover, Fig. 6 confirms that slim-mode operation of ASSET

does not overload the network. In the period from the beginning
of the simulation until the attacks (vertical red line), ASSET oper-
ates with the minimum number of monitoring messages, i.e., [NP]
messages from nodes to report parents’ changes and/or [SP] mes-
sages from the Controller to the nodes, requesting missing infor-
mation regarding their parents. The purple curve, corresponding
to the RPL network with the IDS functionality, is only slightly
higher, i.e., 6.28 percent on average in our simulation, compared
to the blue line, representing the standard RPL operation.

The full-mode operation of ASSET succeeds in the attacker’s
dentification and mitigation at the cost of increased control
verhead. However, this overhead remains lower, 49.87 percent
n average, than when the RPL protocol is left unshielded. Indeed,
ithin the time frame between the red and green verticals, node
nd controller-level anomaly detection are taking place, addi-
ional messages ([IS], [NR], and [NN]) are sent to the Controller,
ho then activates the three steps described in Section 3.4 to

dentify the attacker. However, despite these demanding pro-
esses, ASSET controls network topology disruptions and updates,
oderating Local and Global Repair ([LR] and [GR] messages) and,

thus, holding the peak in the purple curve.
Finally, mitigating the attack brings as much as 95.96 percent

benefit to the network in control overhead. In the period from
the attacks’ mitigation (vertical green line) until the end of the
simulation, ASSET manages to establish a new DODAG consisted
of legitimate nodes while allowing the network to continue its
mission, i.e., data gathering.

4.2.4. Attacker’s identification
Our last proof-of-concept outcome elaborates on the attacker’s

identification mechanism. In Fig. 8, in a three-hour run, we op-
erate another random, multi-hop topology (illustrated on the
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p-left part), where 25 nodes (the yellow ones) are under Black-
hole attack by the purple node (ID = 27), while they route their
data packets to the sink (green node). The intruder is placed
within the direct reach of six nodes (ID 2, 6, 7, 10, 15, 18) and
presents a legitimate behavior until 01:20 hour when it starts
dropping all received data packets in their routing towards the
sink (including the attacker’s own ones to make the scenario
more challenging).

In a network with scheduled UDPs and a pre-defined dispatch-
ing period, the impact of a Blackhole attack is to differentiate
affected by non-affected nodes in terms of the UDP packets num-
ber arrived at the sink. Indeed, the K-Means algorithm running
in the Controller has successfully divided the network into two
distinct groups, i.e., clusters 0 and 1 (bottom left window), also
illustrated in the right part of Fig. 8, i.e., cluster 0 contains the
yellow nodes along with the sink (non-affected as indicated by
the high number of UDP packets). In contrast, cluster 1 shown in
red, consists of the affected nodes (due to the low number of UDP
packets).

A closer look at the affected sub-graph reveals that only nodes
6, 7, and 18 within the intruder’s coverage are affected by the
attack. In contrast, the other three ones, i.e., 2, 10 and 15, are
not affected because they do not select the intruder as a parent
(indeed, the parent of the nodes 2,15 is node 26, while the parent
of node 10 is node 23). Simultaneously, nodes 3, 13 and 5, 9, 17
select as a parent the affected nodes 18 and 6, respectively, and
consequently are also influenced by the Blackhole attack, although
they are not within the intruder’s coverage.

At this step, it is crucial to distinguish among cluster members
to identify the malicious one. K-means feeds Kosaraju’s algorithm
with the red sub-graph. Kosaraju then defines one sub-graph (or
more, in case of multiple attacks) and passes the graph to the
mother node algorithm. The algorithm recognizes node 27 as
the ‘‘root’’ of this sub-graph, identifying this ID as the malicious
node. In our simulation, the attack begins at 01:20 hour, and our
system recognizes the attacker at 01:47 hour. Right afterward, the
Controller blacklists this node to not be selected as a parent node.

In this scenario, we noticed that leaving unmitigated such an
attack reduces the packets that the sink successfully received by
as much as 17.3 percent. Our system helps the network lose only
5.7 percent of the packets that would eventually arrive at the sink
in a non-attack case.

Next, we carry on discussing the results on the robustness of
ASSET.

4.3. Robustness results

Our results regarding ASSET’s robustness are summarized in
Table 5 and show that our proposed system can handle 13 at-
tacks. We excluded from our analysis Sinkhole, Neighbor, and
Sybil attacks due to their high similarities with Decreased Rank,
Replay, and Clone-ID attacks, respectively. Moreover, Decreased
Rank and DODAG Inconsistency attacks appear twice in the Table
to highlight how alternative mechanisms can handle them.

Each row of Table 5 represents a three-hour simulation, di-
vided into 5 min time-slots, regarding the same 25-nodes’ net-
work. The first two rows refer to Chebyshev’s and Dixon’s op-
erations in case of non-attack. In contrast, each of the rest rows
represents a type of attack (1st column), occurring at the 80th
min, along with the detection mechanism (2nd column) in place.

Regarding basic implementation details and configurations,
in Blackhole attack, the malicious node suspends forwarding of
all UDP data packets traveling towards the sink. In contrast, for
Grayhole the attacker decides to forward or not the received
data packet based on a fair coin toss. In Decreased Rank at-
tack, a malicious node is advertising a fake rank calculated after
13
subtracting four times the RPL’s parent switching threshold (Min-
HopRankIncrease) from the attacker’s actual rank (i.e., fake_rank
= actual_rank - 4*MinHopRankIncrease). For DODAG Version at-
tack, an adversary keeps sending DIO messages with increasing
version numbers, triggering continuous Trickle Timer Resets, in
addition to Global and Local Repairs. DODAG Inconsistency attack
is applying erroneous headers in RPL messages [32] triggering
also Trickle Timer Resets, Global and Local Repairs. Global or Local
epair attacks, are replicated with a DODAG Inconsistency attack.
looding attack was implemented with the attacker continuously
ispatching forged RPL & data packets, limited by Cooja pro-
essing capabilities since a high communication load crashes
he (emulated) serial port. We implemented the Replay attack
n a similar way to Flooding attack by assuming an adversary
ontinuously re-sending the RPL messages it receives. Finally,
he Clone-ID attacker duplicates existing RIME, MAC, and/or IPv6
ddresses, i.e., leading to duplicated node IDs.
The specific attack detection mechanism employed for each

ttack is also indicated in Table 5. Chebyshev’s inequality’s and
ixon’s settings are wsize = 8, p1 = 0.95 and wsize = 5,

confidence = q99, respectively. The configuration of threshold
F was set to 10 (half of the one proposed by RPL, assuming a
hostile environment), and adaptable λ is implemented as defined
in Section 3.3.2. These mechanisms operate both on the node and
Controller side, depending on the attack type. K-Means confidence
was set to 0.1.

The central cells in Table 5 indicate the number of nodes
signaling an attack at the given time-slot, based on the mecha-
nism referenced in the particular row. We indicate with bold the
time-slot that attacks start, e.g., we selected slot 16 on 80th min
for all different cases. We color differently the cells where the
attacks are detected (gray) and mitigated (dark gray-white fonts),
as well as those reflecting false positives (light gray). Single nodes
cause a few false positives. As previously discussed, an event is
considered an attack when at least three nodes declare its detec-
tion, except for Clone-ID and Global Repair attacks, because the
orresponding mechanisms do not cause false positives, e.g., the
lobal Repair attack is being handled at the sink only. Moreover,
egarding Decreased Rank detection, although four rank inconsis-
encies are reported in time-slot 18, the dedicated RV mechanism
eeds to mandate the nodes to enable full-function mode to send
ll neighbor’s data (i.e., [SN] message) and compare all declared
anks for discrepancies before identifying the attacker.

We consider an attack as mitigated when the proper mitiga-
ion action is enforced, independently of the time it takes. An
ndication of the latter appears in Table 5 through the declining
umber of nodes signaling the attack immediately after the miti-
ation time-slots. Once we described our notation, we proceeded
ith our observations based on each row’s results.
The first two rows consider simulations without attacks to

ighlight the overhead of ASSET during regular system operation.
n the one hand, Chebyshev’s inequality did not produce any
alse positives. However, we had some rare false positives with
ore relaxed confidence levels (e.g., p1 = 0.90) without trigger-

ng attack detection. On the other hand, the Dixon-Q test faces 5
ases of single-node detecting outliers, e.g., node 22nd on time-
lots 23, 24, and 25. We also note that Dixon-Q detects some
nfrequent outliers even after an attack is mitigated since the
etwork settles down progressively. This causes a minor commu-
ication overhead increase in the particular nodes, i.e., enabling
he transmission of ICMP statistics to the Controller, and high-
ights that ASSET’s control overhead adaptability aspects require
urther investigations, which we consider as future work.

Blackhole and Grayhole attacks impact data rather than control
ackets. We employ the K-Means algorithm, which continuously
lusters the nodes into two groups based on their UDP packets
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Table 5
ASSET’s robustness evaluation.

Time (180 min) 5 10 15 20 25 30 35 40 45 50 55 60 5 10 15 20 25 30 35 40 45 50 55 60 5 10 15 20 25 30 35 40 45 50 55 60

Time-slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

No Attack DM
Chebyshev’s Inequality Ch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Dixon-Q Test Di 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0

Attack
Blackhole K 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 2 4 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Grayhole K 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 0 0 0 0 0 0 0 0 0 1 0
Decreased Rank RV 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 5 5 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
Decreased Rank Ch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DODAG Version λ(C, n) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DODAG Inconsistency λ(C,n) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DODAG Inconsistency Ch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Global Repair λ(C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Local Repair λ(C),F(n) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Flooding Ch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 5 9 10 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Replay Ch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 11 12 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Clone-ID ∆ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Attack initiation Ch: Chebyshev’s Inequality, Di: Dixon-Q Test, K: K-Means
False Positives λ: Adaptable Threshold, F: Fixed Threshold, RV: Rank Validation, ∆: Node ID Validation

Attack Detection C: Controller, n: node
Attack Mitigation

14



FUTURE: 6180

G. Violettas, G. Simoglou, S. Petridou et al. Future Generation Computer Systems xxx (xxxx) xxx

a1
s2
e3
C4
W5
p6
m7

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

a48
a49
a50

51
52
53
54
55
56
57
58
59
60

s61
d62

63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109

110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

t

rrived at the sink. We consider a true positive whenever a
mall cluster with nodes present a low number of UDP pack-
ts, i.e., assuming that the attack does not impact most nodes.
onsequently, the sporadic false positives do not cause any issue.
e noticed that topology-size and severity of attack impact false
ositives and attack mitigation time. For example, it takes three
ore time-slots for ASSET to mitigate the less severe Grayhole

attack, compared to Blackhole. Such issues deserve a dedicated
analysis.

Regarding the Decreased Rank attack, we provide results for
both Rank Validation and Chebyshev mechanisms. The former
needs four time-slots until its mitigation time, while the latter
can detect the attack in just two time-slots. However, Cheby-
shev is not equipped to mitigate this particular attack. In this
execution, RV is characterized by two false positives, before and
after the attack, without impacting the attack detection process.
These results highlight the need for dedicated specification-based
mechanisms.

DODAG Version attack is mitigated within two time-slots be-
cause of frequent DIO packets with increasing DODAG versions.
In the first and second time-slots, the adaptable λ thresholds
are being crossed at the node- and controller-levels, respectively,
i.e., the latter confirming the attack detection. We have an equiv-
alent result for DODAG Inconsistency attack since their outcome
is similar, given the attacker’s same spatial position. Here, we
mitigate the attack’s outcome, i.e., suspend resetting Trickle Timer,
Global, and Local Repairs since identifying the attacker requires
additional software or equipment [25], considered out of the
paper’s scope.

We also provide the outcome of Chebyshev’s mechanism in
the case of DODAG Inconsistency attack, highlighting its inability
to detect the latter and the advantages of ASSET’s specification-
based mechanisms. We note that Chebyshev with a lower sen-
sitivity (e.g., p1 = 0.90 and the same wsize) can detect the
attack at time-slot 20 and mitigate it at 21, i.e., later than the
adaptable λ. Such aspects highlight that anomaly detection and
specification-based mechanisms can be operating in a parallel
manner, complementing each other.

In the case of Global Repair attack, ASSET needs three time-
slots to mitigate it (i.e., the sink ignores further Global Repair
mandates). This process involves the communication of nodes
with the sink and the follow-up involvement of the Controller.
The mitigation time is shorter by one time-slot for Local Repair
attacks, where nodes signal an attack as soon as their fixed
threshold F is reached, which is confirmed by the Controller with
its adaptable threshold λ.

It takes four time-slots for ASSET to mitigate both Flooding
nd Replay attacks because of the gradual control traffic increase
mong the nodes. One node detects an outlier for the Replay
ttack at the 28th time-slot, which is ignored by the Controller.

Mitigation for both attacks involves disabling Global and Local
Repairs, as well as Trickle Timer Resets. Since Cooja faces stability
issues with these two attacks, conducting these experiments in a
test-bed environment and studying the network’s behavior under
real network conditions is another open issue.

Clone-ID attackers are rapidly identified by the Controller with
100 percent accuracy, due to the centralized nature of ASSET,
i.e., nodes with duplicated IDs are immediately detected and
black-listed. Sybil attacks will also be equivalently mitigated.

The above results demonstrate that ASSET, under the given
cenario, configuration settings and network conditions: (i) can
etect 13 attacks (i.e., including Sinkhole, Neighbor, and Sybil

attacks that exhibit a very similar behavior with Decreased Rank,
Replay, and Clone-ID, respectively) without false positives in at-
tack detection, i.e., we noticed only some rare false alarms from

nodes to the Controller; (ii) handles effectively the infrequent s
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false alarms due to the requirement that at least three nodes
should signal an attack before a mitigation action being triggered;
(iii) employs multiple attack detection mechanisms, including
three anomaly detection and four specification-based, contribut-
ing to both width and depth of attack detection; (iv) mitigation
time depends on the attack type, severity, and behavior; and
(v) manages to identify and exclude the attackers for Blackhole,
Grayhole, Decreased Rank, and Clone-ID attacks, while for the rest
of them it mitigates the outcome of the attack, i.e., the attack may
still be present.

Due to our experiments’ high complexity, we consider a more
thorough investigation of ASSET’s performance, including its sta-
tistical evaluation and comparison with other similar solutions, as
future work. However, we argue that the current results suffice
to confirm ASSET’s novelties, as defined in the paper.

4.3.1. Open ASSET vulnerabilities
Here, we discuss several ASSET’s security vulnerabilities that

are outside the scope of this paper and deserve further investiga-
tion. These open challenges can be summarized as follows.

For simplicity, we currently assume that ASSET Controller and
corresponding communication (e.g., packets carrying measure-
ments from nodes to the Controller) is safe and not tampered.
For example, attacks oriented to Software-Defined IoT solutions
could be relevant to ASSET, e.g., targeting a centralized Controller.3
Consequently, there is a need for hardening the related secu-
rity. Several techniques could be potentially applied, including
Byzantine Fault Tolerance [54], n-versioning, or secure tokens and
enclaves. Moreover, a sophisticated attack could possibly tamper
with the measurements traveling to the sink to ‘‘hide’’ an ongoing
attack or to work around an ASSET mechanism. This may be
challenging for ASSET since it operates many attack detection
mechanisms in parallel, i.e., another one may detect the attack.
We consider such aspects complementary with our solution but
complicated enough to deserve an independent study.

Furthermore, our proposal may be vulnerable to more sophis-
ticated attacks than the considered ones. For example, neighbor-
ing nodes may collude to exclude nodes from the graph or apply a
Clone-ID attack after collapsing the node to be duplicated. In the
latter case, reputation-based mechanisms can be implemented as
a scheme with multi-path duplication of messages, i.e., to verify
node’s compliance. Although this is always the case with IDSs, we
consider ASSET as a descent solution to many different attacks, in
contrast to the related works.

5. Related works

In the context of RPL, the associated IDSs gain popularity fol-
lowing the protocol’s evolution [7,12,14,55]. Literature classifies
these RPL-related IDSs according to two main criteria [56]: (i)
the detection method they employ, and (ii) their placement strat-
egy. Based on the detection method, the IDSs are distinguished
in: signature detection, anomaly detection, RPL specification-based
systems, while hybrid detection IDSs combine at least two of the
aforementioned categories. Regarding their placement strategy,
RPL-related IDSs are classified into: centralized, distributed, and
hybrid placement systems; the latter that blend the rationale of
centralized and distributed by keeping the ‘‘heavy’’ tasks for the
root or central node(s) and delegating the more lightweight ones
to the rest.

In our survey paper published in 2021 [14], we have inves-
tigated the 22 most recently introduced RPL-related IDSs in the

3 Although ASSET adopts ideas originating from the SDN world, the scope of
his paper covers RPL-related attacks only, rather than the security of SDN IoT
ystems.
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able 6
omparative overview of existing hybrid IDSs related to our work.
IDS DM EE NA E IA AM
[43] AD, SB, SD S 7 Y Y WE
[57] AD, SB S 3 Y Y N
[58] AD, SD S 5 – N N
[44] AD, SD S 3 Y N N
[59] AD, SD C 8 Y Y MF
ASSET AD, SB S 13 Y Y MM

DM: Detection Method - Anomaly Detection (AD), Specification-Based Detection
(SB), Signature Detection (SD).
EE: Evaluation Environment - (S)imulation, (C)onceptual.
NA: Number of Attacks.
E: Extendability - Y/N.
IA: Identification of Attacker AM: Attack Mitigation - White List Exclusion (WE),
Mini Firewall (MF), Multiple Methods (MM).

literature (2013 − 2020) and concluded the outcome that com-
bining detection methods as well as placement strategies brings
positive results. The competetive advantage was found to be the
number of attacks the system detects; this ranges from three to
five (3 to 5) for the hybrid detection systems [44,58] and goes up
to eight (8) for the full hybrid ones [43,59]. Table 6 provides a
brief comparative overview of hybrid systems, which are found
the most advanced of the recent literature [14] and relevant to
our proposed one.

Further benefits include the ability of some systems to iden-
tify the attacker [57,59] and/or mitigate the attack [43,59], the
extendability as a feature that enables the IDS evolution towards
detecting new attacks, as well as the detection accuracy rate
in conjunction with low resource overhead, especially when the
developed mechanisms are appropriately located both in central
and distributed nodes.

In particular, appropriately tuning the parameters of SVELTE
43] can offer as much as 100 percent of detection accuracy and
ero false positives. However, the system trades its advantages
ith resource requirements regarding storage, the signatures’
epository, and computational power for anomaly detection algo-
ithms. In comparison, Bostani et al. [57] show an average of 93.3
ercent accuracy with less than 3.3 false positives for multiple
uns.

Game Theory IDS [58] reports an average of 98.6 percent ac-
uracy and less than 2.5 percent of false positives for a variety
f setups. In comparison, CHA–IDS [44] shows an accuracy within
5.2 − 100 percent and up to 0.058 percent false positives, in
he worst case. Although they keep a good balance between
ccuracy, false positives, and overhead, they neither deal with
he attacker’s identification nor with mitigation actions. These
imitations probably stem from the fact that Game Theory IDS
employs a distributed placement strategy not taking advantage
of the results of a central analysis, and vice versa, CHA–IDS is
a centralized system, not exploiting distributed mechanisms. In-
deed, in the case of [59], signature and anomaly detection are
used in combination, exploiting, further, the rationale of a hybrid
placement strategy. The system brings a high score of as many as
8 attacks detected.

Comparing the above hybrid systems is a challenging and not
straightforward task since it is associated with the considered
use-case in terms of required security level and reasonable con-
trol overhead or processing cost, depending on how an IDS covers
the addressed attack(s). Our literature study reveals that different
approaches span from simulating all or some of the attacks to
conceptually supporting coverage for all or subset of the attacks
under invistigation. Indicatively, authors in [59] introduce a full-
conceptual framework, where they discuss but do not evaluate

their IDS. Also, in the case of simulation approaches, differences
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concern the simulation environments and the metrics used to as-
sess the IDSs’ performance. Among different approaches, Contiki
Cooja [38] is a common choice; it is also adopted in our work.

Another challenging issue considering comparison is the lack
of a common framework for IDS evaluation in real environments,
i.e., test-beds. This challenge is reflected in 3rd column of Table 6
which shows that all approaches with evaluation results use
simulation. Our previous experience with test-beds participating
in the FED4FIRE [60] and GENI [61] federations, in the context
of 5G network slicing research [62–64], shows that it would be
interesting, but also very challenging, to deploy complete IDSs
in test-beds for evaluation reasons and address possible issues
that arise. Currently, the Sharing Artifacts in a Cybersecurity
Community Hub (SEARCCH) project [65] offers a facility that
provides validation, repeatable sharing, and reuse of security-
related research results. A relevant initiative for IoT security could
establish a common framework where open-source IDS code
could be released and comparatively evaluated, e.g., in a com-
mon environment with the same methodology and evaluation
scenarios.

In this work, we exploit observations derived by the recent
bibliography to develop a novel softwarized IDS by-design, in the
sense that it assigns lightweight tasks, such as monitoring and
first-place detection, to the constraint end-nodes and transfers
the demanding tasks to central premises. Besides, ASSET follows a
modular architecture that allows adaptations and/or extendabil-
ity. It combines anomaly and specification-based detection and, to
the best of our knowledge, is the most robust system compared
to its peers. It detects 13 RPL-related attacks, supports attacker’s
identification, and offers several mitigation actions depending on
the attack detected.

Conclusion

ASSET’s evaluation has shown that handling attacks against
the RPL protocol is challenging and highly dependent on the im-
plemented mechanisms targeting one or more specific attack(s).
Moreover, transferring node-level functions to the centralized
infrastructure is more stable and accurate and provides new
capabilities to the network administrators. Some attacks can be
handled with high accuracy, while some can be mitigated, leaving
the identification of the intruder as an open issue. In addition,
inspired by the softwarization paradigm, by offering centralized
intelligence and extendability, ASSET is an ideal platform for
new mechanisms and tools to be tested in the areas of anomaly
detection and SDN-like solutions for RPL and the IoT in general.

ASSET exhibits the following advantages: (i) a holistic work-
flow handling 13 well-known RPL-related attacks; (ii) 3 anomaly
and 4 specification-based attack detection mechanisms, operating
both at node and controller-level and exhibiting a low number of
false positives; (iii) a set of alternative mitigation actions and an
original attacker identification process; and (iv) an adaptable con-
trol and monitoring protocol, trading communication overhead
for attacker detection accuracy.

Our next steps include the following aspects: (i) to further
improve (i.e., in width and depth) the attack detection and mit-
igation, the attacker identification mechanisms, as well as the
control channel adaptability, including employing change-point
analysis for anomaly detection [66,67], (ii) to conduct extensive
experimentation with multiple attacks (also co-existing), attack-
ers, topology structures and sizes, experiment configurations,
including based on real IoT test-beds, to accurately measure the
implications of ASSET to network latency among others, (iii) to
incorporate a separate control channel with a long-range inter-
face, inspired by [68,69], which can significantly improve ASSET’s
operation, in terms of communication overhead and attack miti-
gation capability, (iv) to assess the node’s mobility and wireless
 114
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nterference impact and how they can affect attack detection
ince it can also increase control overhead, e.g., they may cause
alse positives in anomaly detection.
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